Local Texture Estimator for Implicit Representation Function, in CVPR 2022

Local Texture Estimator for Implicit Representation Function

This repository contains the official implementation for LTE introduced in the following paper:

Local Texture Estimator for Implicit Representation Function (CVPR 2022)

Quick Start

1. Download a pre-trained model.

Model Download
EDSR-baseline-LTE Google Drive
EDSR-baseline-LTE+ Google Drive
RDN-LTE Google Drive
SwinIR-LTE Google Drive

2. Reproduce experiments.

Table 1: EDSR-baseline-LTE

bash ./scripts/test-div2k.sh ./save/edsr-baseline-lte.pth 0

Table 1: RDN-LTE

bash ./scripts/test-div2k.sh ./save/rdn-lte.pth 0

Table 1: SwinIR-LTE

bash ./scripts/test-div2k-swin.sh ./save/swinir-lte.pth 8 0

Table 2: RDN-LTE

bash ./scripts/test-benchmark.sh ./save/rdn-lte.pth 0

Table 2: SwinIR-LTE

bash ./scripts/test-benchmark-swin.sh ./save/swinir-lte.pth 8 0

Train & Test

EDSR-baseline-LTE

Train: python train.py --config configs/train-div2k/train_edsr-baseline-lte.yaml --gpu 0

Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_edsr-baseline-lte/epoch-last.pth --gpu 0

EDSR-baseline-LTE+

Train: python train.py --config configs/train-div2k/train_edsr-baseline-lte-fast.yaml --gpu 0

Test: python test.py --config configs/test/test-fast-div2k-2.yaml --fast True --model save/_train_edsr-baseline-lte-fast/epoch-last.pth --gpu 0

RDN-LTE

Train: python train.py --config configs/train-div2k/train_rdn-lte.yaml --gpu 0,1

Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_rdn-lte/epoch-last.pth --gpu 0

SwinIR-LTE

Train: python train.py --config configs/train-div2k/train_swinir-lte.yaml --gpu 0,1,2,3

Test: python test.py --config configs/test/test-div2k-2.yaml --model save/_train_swinir-lte/epoch-last.pth --window 8 --gpu 0

Model Training time (# GPU)
EDSR-baseline-LTE 21h (1 GPU)
RDN-LTE 82h (2 GPU)
SwinIR-LTE 75h (4 GPU)

We use NVIDIA RTX 3090 24GB for training.

Fourier Space

The script Eval-Fourier-Feature-Space is used to generate the paper plots.

Demo

python demo.py --input ./demo/Urban100_img012x2.png --model save/edsr-baseline-lte.pth --scale 2 --output output.png --gpu 0

Acknowledgements

This code is built on LIIF and SwinIR. We thank the authors for sharing their codes.

Download Source Code

Download ZIP
Apr 21, 2022